منابع مشابه
Carcinome épidermoïde vulvaire: pourquoi surveiller un lichen scléro-atrophique
Le carcinome épidermoïde (CE) de la vulve représente 3 à 5% des cancers génitaux de la femme. Il peut survenir sur des lésions de dysplasies liées à une infection à papillomavirus ou sur des lésions de lichen scléreux. Cliniquement, il s'agit d'une ulcération douloureuse ou prurigineuse suintante reposant sur un fond érythroplasique siégeant au niveau de la face interne des grandes lèvres dans ...
متن کاملThe Legendre transform
f((1− t)x1 + tx2) ≤ (1− t)f(x1) + tf(x2), x1, x2 ∈ C, 0 ≤ t ≤ 1, then f : X → R is convex. Proof. Let (x1, α1), (x2, α2) ∈ epi f and 0 ≤ t ≤ 1. The fact that the pairs (xi, αi) belong to epi f means in particular that f(xi) < ∞, and hence that xi ∈ C, as otherwise we would have f(xi) =∞. But (1− t)(x1, α1) + t(x2, α2) = ((1− t)x1 + tx2, (1− t)α1 + tα2), and, as x1, x2 ∈ C, f((1− t)x1 + tx2) ≤ (...
متن کاملTwisted Legendre transformation
The general framework of Legendre transformation is extended to the case of symplectic groupoids, using an appropriate generalization of the notion of generating function (of a Lagrangian submanifold). 1 Tulczyjew triple and its generalization The general framework of Legendre transformation was introduced by Tulczyjew [1]. It consists in recognition of the following structure, which we call th...
متن کاملOn Polar Legendre Polynomials
We introduce a new class of polynomials {Pn}, that we call polar Legendre polynomials, they appear as solutions of an inverse Gauss problem of equilibrium position of a field of forces with n + 1 unit masses. We study algebraic, differential and asymptotic properties of this class of polynomials, that are simultaneously orthogonal with respect to a differential operator and a discrete-continuou...
متن کاملLegendre Ramanujan Sums transform
In this paper, Legendre Ramanujan Sums transform(LRST) is proposed and derived by applying DFT to the complete generalized Legendre sequence (CGLS) matrices. The original matrix based Ramanujan Sums transform (RST) by truncating the Ramanujan Sums series is nonorthogonal and lack of fast algorithm, the proposed LRST has orthogonal property and O(Nlog2N) complexity fast algorithm. The LRST trans...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rechtsgeschichte - Legal History
سال: 2006
ISSN: 1619-4993,2195-9617
DOI: 10.12946/rg08/086-091