Pourquoi Legendre?

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carcinome épidermoïde vulvaire: pourquoi surveiller un lichen scléro-atrophique

Le carcinome épidermoïde (CE) de la vulve représente 3 à 5% des cancers génitaux de la femme. Il peut survenir sur des lésions de dysplasies liées à une infection à papillomavirus ou sur des lésions de lichen scléreux. Cliniquement, il s'agit d'une ulcération douloureuse ou prurigineuse suintante reposant sur un fond érythroplasique siégeant au niveau de la face interne des grandes lèvres dans ...

متن کامل

The Legendre transform

f((1− t)x1 + tx2) ≤ (1− t)f(x1) + tf(x2), x1, x2 ∈ C, 0 ≤ t ≤ 1, then f : X → R is convex. Proof. Let (x1, α1), (x2, α2) ∈ epi f and 0 ≤ t ≤ 1. The fact that the pairs (xi, αi) belong to epi f means in particular that f(xi) < ∞, and hence that xi ∈ C, as otherwise we would have f(xi) =∞. But (1− t)(x1, α1) + t(x2, α2) = ((1− t)x1 + tx2, (1− t)α1 + tα2), and, as x1, x2 ∈ C, f((1− t)x1 + tx2) ≤ (...

متن کامل

Twisted Legendre transformation

The general framework of Legendre transformation is extended to the case of symplectic groupoids, using an appropriate generalization of the notion of generating function (of a Lagrangian submanifold). 1 Tulczyjew triple and its generalization The general framework of Legendre transformation was introduced by Tulczyjew [1]. It consists in recognition of the following structure, which we call th...

متن کامل

On Polar Legendre Polynomials

We introduce a new class of polynomials {Pn}, that we call polar Legendre polynomials, they appear as solutions of an inverse Gauss problem of equilibrium position of a field of forces with n + 1 unit masses. We study algebraic, differential and asymptotic properties of this class of polynomials, that are simultaneously orthogonal with respect to a differential operator and a discrete-continuou...

متن کامل

Legendre Ramanujan Sums transform

In this paper, Legendre Ramanujan Sums transform(LRST) is proposed and derived by applying DFT to the complete generalized Legendre sequence (CGLS) matrices. The original matrix based Ramanujan Sums transform (RST) by truncating the Ramanujan Sums series is nonorthogonal and lack of fast algorithm, the proposed LRST has orthogonal property and O(Nlog2N) complexity fast algorithm. The LRST trans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rechtsgeschichte - Legal History

سال: 2006

ISSN: 1619-4993,2195-9617

DOI: 10.12946/rg08/086-091